High in vitro activity of a novel dual bacterial topoisomerase inhibitor of the ATPase activities of GyrB and ParE (VT12-008911) against Neisseria gonorrhoeae isolates with various high-level antimicrobial resistance and multidrug resistance.

نویسندگان

  • Samo Jeverica
  • Daniel Golparian
  • Brian Hanzelka
  • Andrew J Fowlie
  • Mojca Matičič
  • Magnus Unemo
چکیده

OBJECTIVES Clinical resistance to the currently recommended extended-spectrum cephalosporins (ESCs), the last remaining options for empirical antimicrobial monotherapy of gonorrhoea globally, has been reported. New antimicrobials are essential to avoid the emergence of untreatable gonorrhoea. We have investigated the in vitro activity of a novel dual bacterial topoisomerase inhibitor of the ATPase activities of GyrB and ParE (Vertex aminobenzimidazole VT12-008911), compared with antimicrobials currently or previously recommended for gonorrhoea treatment. METHODS MICs were determined using agar dilution (VT12-008911) or Etest (seven antimicrobials) for international reference strains (n = 28) and clinical Neisseria gonorrhoeae isolates (n = 220). The latter included three extensively drug-resistant isolates with high-level ceftriaxone resistance, additional isolates with clinical ESC resistance and a high number of isolates with ciprofloxacin resistance and multidrug resistance. RESULTS The MIC(50), MIC(90) and MIC range of VT12-008911 were 0.064, 0.125 and ≤0.002-0.25 mg/L, respectively. One-hundred and seventy (69%) isolates were ciprofloxacin resistant; however, only 54 of those isolates had a VT12-008911 MIC >0.064 mg/L (47 and 7 with MIC = 0.125 mg/L and MIC = 0.25 mg/L, respectively). The in vitro activity of VT12-008911 was superior to that of ciprofloxacin and all additional antimicrobials investigated. Time-kill curve analysis showed that VT12-008911 exhibited potent time-dependent bactericidal activity, at or very close to the MIC, against N. gonorrhoeae. CONCLUSIONS In vitro results suggest that VT12-008911 might be an effective treatment option for gonorrhoea. However, it will be important to detail the pharmacokinetics/pharmacodynamics, toxicity, selection and mechanisms of VT12-008911 resistance in N. gonorrhoeae and, finally, to perform well-designed in vivo randomized clinical trials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vitro Activity of Delafloxacin against Clinical Neisseria gonorrhoeae Isolates and Selection of Gonococcal Delafloxacin Resistance.

We evaluated the in vitro activity of delafloxacin against a panel of 117 Neisseria gonorrhoeae strains, including 110 clinical isolates collected from 2012 to 2015 and seven reference strains, compared with the activities of seven antimicrobials currently or previously recommended for treatment of gonorrhea. We examined the potential for delafloxacin to select for resistant mutants in ciproflo...

متن کامل

High in vitro activity of the novel spiropyrimidinetrione AZD0914, a DNA gyrase inhibitor, against multidrug-resistant Neisseria gonorrhoeae isolates suggests a new effective option for oral treatment of gonorrhea.

We evaluated the activity of the novel spiropyrimidinetrione AZD0914 (DNA gyrase inhibitor) against clinical gonococcal isolates and international reference strains (n=250), including strains with diverse multidrug resistance and extensive drug resistance. The AZD0914 MICs were substantially lower than those of most other currently or previously recommended antimicrobials. AZD0914 should be fur...

متن کامل

Detection of DNA Gyrase Mutation and Multidrug Efflux Pumps Hyperactivity in Ciprofloxacin Resistant Clinical Isolates of Pseudomonas aeruginosa

  Target modification and reduced drug accumulation are the main resistance mechanisms against fluoroquinolone antibiotics in Pseudomonas aeruginosa. We performed a genotypic characterization of three major Mex multidrug efflux pumps (MexAB-OprM, MexXY-OprM and MexCD-OprJ) in ciprofloxacin resistant clinical isolates of P. aeru­ginosa, collected from Tehran, Iran this was followed by sequencin...

متن کامل

Dual targeting of GyrB and ParE by a novel aminobenzimidazole class of antibacterial compounds.

A structure-guided drug design approach was used to optimize a novel series of aminobenzimidazoles that inhibit the essential ATPase activities of bacterial DNA gyrase and topoisomerase IV and that show potent activities against a variety of bacterial pathogens. Two such compounds, VRT-125853 and VRT-752586, were characterized for their target specificities and preferences in bacteria. In metab...

متن کامل

In vitro antibacterial activity of AZD0914, a new spiropyrimidinetrione DNA gyrase/topoisomerase inhibitor with potent activity against Gram-positive, fastidious Gram-Negative, and atypical bacteria.

AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of antimicrobial chemotherapy

دوره 69 7  شماره 

صفحات  -

تاریخ انتشار 2014